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ABSTRACT 
 

Despite the potential of robotic systems for automating the construction industry, the role 
of human operators remains essential for the success of these systems in complex and dynamic 
environments. However, current human-robot interfaces are often limited to low-level interactions 
that require constant micromanaging of robot movements. To address this limitation, this study 
proposes a deictic gesture-based interface that enables high-level task specification for 
construction robots. To evaluate the user experience and task performance of the proposed 
interface, we conducted a laboratory experiment with six human subjects who interacted with the 
robot to make openings in drywall panels. The results show that the proposed interface 
significantly reduced mental demand and effort levels among the participants compared to the 
conventional joystick interface. Moreover, task performance using the proposed interface was 
comparable in accuracy and efficiency to that achieved with the joystick interface. These findings 
highlight the potential of the proposed deictic gesture-based interface to facilitate intuitive human-
robot interaction and precise operation of construction robots, particularly in situations where as-
planned building models are not readily available. 
 
INTRODUCTION 
 

Despite the growing expectations of advanced robotic capabilities for performing complex 
tasks in construction, challenges remain in integrating robotic systems into construction sites. 
Specifically, the current capabilities of construction robots are limited to performing simple and 
repetitive tasks, which often require significant input from human operators to control the robots 
(Liang Ci-Jyun et al. 2021). Despite the potential of robotic systems to automate the construction 
industry, the role of human operators remains crucial in ensuring the success of these systems in 
dynamic and complex construction sites (Wang et al. 2021). 

In such complex environments, high-level human input plays a critical role. Human 
decisions about task-relevant information can help to improve robot’s task performance in 
uncertain or ambiguous environments (Stoddard et al. 2022). For example, in the task of drywall 
cutting, a task specification could include the precise positions and/or angles needed for the robot 
to make accurate and efficient cuts (Feng et al. 2013). Such high-level specifications can help the 



   

robot to perform tasks more effectively with a high degree of autonomy, without requiring constant 
human intervention (Stoddard et al. 2022). Traditional methods such as control pads or buttons 
have proven to be difficult to achieve this level of human input (Losey et al. 2022).  

Several approaches for developing intuitive human-robot interfaces that can deliver human 
input to construction robots are present in the literature. Interaction techniques that are easy to 
learn and use can significantly facilitate communication between end-users and technology (Han 
et al. 2020). Intuitive human-robot interfaces allow users to use body gestures (Wang et al. 2023; 
Wang and Zhu 2021), haptic technology (Zhu et al. 2021; Zhu Qi et al. 2022), and brain activities 
(Liu et al. 2021a; b) to communicate with the robot, reducing the cognitive load on the operator 
and increasing the efficiency of the system (Villani et al. 2018). However, these interfaces are 
typically limited to interactions with low-levels of human input, as they often rely on direct control 
strategies (Chen et al. 2020), such as ‘move up’ or ‘stop’, which are not capable of handling the 
technical complexity of providing high-level input for construction tasks. Such high-level input, 
such as choosing a workpiece or specifying precise positions and angles for cutting or assembly, 
is often difficult to interpret accurately and thus requires additional intelligence for interfaces 
(Chen et al. 2020). 

To this end, this study proposes a deictic gesture-based interface that can handle in situ 
task specification as high-level inputs for construction robots (Figure 1). Deictic gestures, which 
are commonly used to convey spatial information in complex environments (Alibali 2005), are 
used as input for the interface, which combines laser pointing as fine-tuning techniques to 
accurately estimate task locations in 3D workspaces and perform corresponding motion planning. 
To evaluate the performance of our proposed interface, we conducted a laboratory experiment in 
which six human subjects interacted with the robot to make openings in drywall panels for 
installing steel vents using deictic gesture-based interaction method. The findings of this study 
highlight the opportunity of using our deictic gesture-based interface to facilitate intuitive human-
robot interaction and precise operation of construction robots.  

 

 
 

Figure 1. Task specification sequence using our gesture-based human-robot interface.  
(a-b): The human operator uses deictic gestures to indicate the target location; (c-d): After 
the robot moves to the detection pose, laser pointing is used to fine-tune the target location. 
  
METHODOLOGY 
 
An overview of the workflow for the proposed deictic gesture-based human-robot interface is 
shown in Figure 2. The proposed interface comprises of three primary components, namely 
environment mapping, pointing detection, and laser point detection, as well as a motion planner. 
The entire system is integrated with the Robot Operating System (ROS), where each component 
is implemented as an individual ROS node. All RGB-D data is collected in real-time through the 
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RGB-D camera mounted on the robot end effector, which is initially oriented towards the human 
operator. 
 

 
 

Figure 2. Workflow of the deictic gesture-based human-robot interface. 
 

Environment mapping. Before receiving task specifications from the human operator, the 
robot conducts a preliminary exploration of its surrounding unknown environment autonomously 
to build a global 3D map. First, the robot end effector traverses its surroundings along a 
predetermined path to collect the 3D point cloud data of the environment. For point cloud data 
collection, we employ the RTAB-Map (Real-Time Appearance-Based Mapping) (Labbe and 
Michaud 2014), a well-known visual Simultaneous Localization and Mapping (vSLAM) 
algorithm. Next, the triangle meshes are created from the dense point cloud using Poission surface 
reconstruction method (Kazhdan et al. 2006). This pre-collected mesh model is then saved as a 
global 3D map to allow the human operator to command target location on the surface of the 
environment (Figure 1 (b)). 

Pointing detection. Given the task specifications through the human operator’s deictic 
gesture, the target location within the global 3D map is estimated. We obtain the 3D positions of 
the shoulder, elbow, and wrist joints through 3D human pose estimation method (Zimmermann et 
al. 2018) (Figure 1 (a)). If a deictic gesture is detected based on the predefined elbow joint angle 
threshold (Yoon et al. 2021), the deictic gesture ray vector is defined as the vector from the 
shoulder to the wrist joint. Next, assuming it is known that the gesture ray intersects with a triangle 
from mesh with index i, the intersection point 𝑃 can be estimated as follows: 

 

𝑃 = 𝐨 +
𝐧! ∙ (𝐯" − 𝐨)

𝐧! ∙ 𝐠
∙ 𝐠 (1) 

 
where 𝐨 is the origin of the gesture ray, and 𝐠 is the gesture ray vector, 𝐧! is the normal vector of 
the intersection triangle with index i, and 𝐯" is one of the vertices of the intersection triangle. The 
intersection point 𝑃, represented in the world coordinate system, is regarded as the target location 
and used to direct the robot towards the detection pose. 

Laser point detection. After the robot moves to the detection pose (Figure 1 (c)), the laser 
pointing technique is utilized to fine-tune the target location (Figure 1 (d)). The detection of laser 
points involves computing the image moment of the HSV image, followed by the conversion of 
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the 2D laser point coordinates to 3D coordinates using the depth image and camera intrinsic. First, 
the input RGB image 𝐼#$% is transformed into the HSV image 𝐼&'(. To segment the red spots from 
the HSV image, the hue layer is limited to a range of [165 – 179], while the saturation layer is 
limited to [10 – 255], and the value layer to [200 – 255]. Furthermore, to distinguish the actual 
laser spot, a threshold is applied to the values of the segmented areas. The center of mass is then 
computed as follows: 
 

𝑀)* =//𝑥)𝑦*𝐼&'((𝑥, 𝑦)
+,

 (2) 
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where 𝐼&'((𝑥, 𝑦)  is the thresholded image and 𝑀)*  is the (𝑖 + 𝑗)/0  order image moment of 
𝐼&'((𝑥, 𝑦). The mass center yields the 2D laser point coordinates (𝑥- , 𝑦-) in the image plane. To 
minimize the jitter and lag of the raw 2D laser point, One-Euro filter (Casiez et al. 2012) is applied. 
Next, 2D laser point coordinates are transformed into 3D space using the inverse projection for the 
pinhole camera model (Sprute et al. 2019): 
 

𝑋- =
𝑥- − 𝑐,
𝑓,

𝑑, 𝑌- =
𝑦- − 𝑐+
𝑓+

𝑑, 𝑍- = 𝑑 (4) 

 
where 𝑑 is the depth value of the corresponding pixel in the depth image, 𝑓, and 𝑓+ are the focal 
lengths of the camera, 𝑐, and 𝑐+ are the principle coordinates of the camera, 𝑋-, 𝑌-, and 𝑍- are the 
3D laser point coordinates in the camera coordinate system. Finally, the 3D coordinates of the laser 
point from the camera coordinate system 𝐿- = (𝑋- , 𝑌- , 𝑍-)	are transformed to the world coordinate 
system 𝐿1 = (𝑋1 , 𝑌1 , 𝑍1), where 𝐿1 = [𝑅|𝑡]𝐿- , 𝑅 and 𝑡 are the rotation matrix and translation 
vector, respectively, obtained from the camera extrinsic. The intrinsic and extrinsic camera 
parameters are acquired through a calibration process.  

Motion planning. Given the target location using gesture and laser pointer, the robotic 
system performs motion planning. To compute the desired end effector pose, we assume that the 
mobile base is set at the desired position and that if the estimated 3D coordinates of the specified 
location are within the robot’s reachable space, the target is located on the ceiling, parallel to the 
ground. Moreover, we set an offset of 30 cm in the direction of the normal vector from the target 
to avoid collision with the workpiece. For motion planning, we utilize the Stochastic Trajectory 
Optimization for Motion Planning (STOMP) algorithm, owing to its demonstrated ability to 
generate smooth trajectories in real-time (Choi et al. 2022). 
 
EXPERIMENTS 
 
To evaluate the performance of the deictic gesture-based human-robot interface, we designed a 
drywall cutting experiment in an environment with unfinished concrete walls. The hardware 
configuration consisted of a mobile base (table lift), a KUKA KR 6 R 900 6-DoF manipulator, and 
an end-effector equipped with a Makita 3706 drywall cut-out tool and an Intel RealSense D435 
RGB-D camera. The experimental task involved performing a drywall cutting to make openings 
for a 10” w X 6” h steel air grill. The objective of human-robot interaction was to deliver target 



   

locations to the robot, as shown in Figure 1. This involved determining the four corner points of 
the opening and delivering the locations using human-robot interface. There were no experimental 
instructions on which order to deliver the four locations. For each corner point, participants were 
required to notify an experimenter once they had moved the robot to the desired pose, thus allowing 
the experimenter to record the position of the tool center point. The experiment was designed as a 
within-subjects experiment, varying the interaction methods: our proposed deictic gesture-based 
interface and the joystick interface. The joystick interface was chosen as the baseline modality for 
comparison, given its conventional acceptance in construction robotics. In the case of the joystick 
interface, participants were interfaced with an Xbox 360 controller, which mapped the three 
translational and three rotational dimensions of the end effector into two analog sticks and buttons.  

We recruited six participants (five male and one female) for the experiment. The 
participants were all right-handed and aged 25.3 on average (SD = 2.45). Each participant was 
asked to perform two task trials, randomized across two interaction methods. To measure the 
performance of our interface, we measured task effectiveness using the pairwise distance error for 
each corner point and task efficiency using the time needed for a user to complete a task instruction. 
Additionally, to obtain a subjective assessment of the user experience, we conducted a post-
experiment survey, wherein the system usability was evaluated using the System Usability Scale 
(SUS) and cognitive load was evaluated using the adapted NASA Task Load Index (NASA-TLX) 
questionnaire. 
 
RESULTS 
 
The results of task performance and usability are presented in Figure 3. Overall, our interface was 
able to accurately estimate the task locations, complete the task efficiently, and provide acceptable 
usability. Participants, on average, completed the tasks with a maximum distance error of 13 mm 
and within 200 seconds. The results suggest that, although certain tendencies were discerned, no 
statistically significant difference was found between the two interaction methods with respect to 
task effectiveness, efficiency, and system usability. Moreover, our interface has the potential to 
adapt to individual differences and mitigate the effects on task performance, resulting in a more 
robust and reliable performance across users. It was revealed that there were no significant 
differences between the six subjects with regards to the measures of task performance (distance 
error: 𝐹(1,10) = 0.254, 𝑝 = 0.625, 𝜂23 = 0.025 ; completion time: 𝐹(1,10) = 0.61, 𝑝 =
0.453, 𝜂23 = 0.057). 

 

 
Figure 3. Results of distance error, completion time, and SUS by interaction method.  
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Figure 4. NASA-TLX scores by interaction method. **p<0.01; †p<0.1. 
 

The results of NASA-TLX questionnaires are shown in Figure 4. The results indicate that 
on average, our interface demonstrated better scores in the dimensions of mental demand, physical 
demand, temporal demand, effort, and frustration. Conversely, joystick recorded higher scores in 
performance. Moreover, our interface showed a significant difference in mental demand (𝑡(5) =
−4.038, 𝑝 = 0.0099) and a marginal difference in effort levels compared to joystick (𝑡(5) =
−2.253, 𝑝 = 0.07).  
 
CONCLUSION 
 
In this study, we developed and tested a novel interface that can handle deictic gesture-based task 
specification for giving four drywall cutting locations to a construction robot. The developed 
interface is capable of motion planning and execution when provided with task locations, allowing 
human operators to focus on higher-level aspects of the task, rather than micromanaging the robot's 
every move. To the best of our knowledge, deictic gesture-based human-robot interaction methods 
have not been widely applied in construction robotics. Although deictic gesture-based interaction 
methods have primarily been used in other domains, such as manufacturing (Neto et al. 2019) and 
logistics (Guzzi et al. 2022), adapting such techniques to the construction domain presents several 
challenges, including differences in the physical environment and level of precision. Despite these 
challenges, the results indicate that the implementation of deictic gestures to human-robot interface 
led to a statistically significant reduction in mental demand and effort levels among the participant, 
compared to the conventional joystick interface. Moreover, our deictic gesture-based interface 
demonstrated task performance comparable in accuracy and efficiency to that achieved using 
joystick. These investigations indicate an opportunity to enhance intuitive and accurate operation 
of the semi-autonomous construction robots, in situations where communication about human 
decisions on task specifications are required.  

The proposed deictic gesture-based human-robot interface has limitations, as it was 
evaluated with only a single human operator. In order to enhance the applicability of the proposed 
interface in the real-world construction sites with multiple workers, future improvements can be 
achieved through the integration of learning-based algorithms capable of identifying the 
appropriate timing for initiating interactions and accurately discerning the worker providing task 
specifications. 

†

* *
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