
Effects of Spatial Characteristics on the Human–Robot
Communication Using Deictic Gesture in Construction

Sungboo Yoon, S.M.ASCE1; YeSeul Kim, S.M.ASCE2;
Moonseo Park, M.ASCE3; and Changbum R. Ahn, A.M.ASCE4

Abstract: Construction robots are expected to frequently communicate in situ improvisations with human workers to adapt and change their
workflow and methods. One way to achieve this is through deictic gestures that are one of the most effective forms of human–robot interaction
(HRI) in delivering spatial information. Nevertheless, the limited coverage of deictic gestures in large-scale environments poses some chal-
lenges for both humans and robots in leveraging such techniques for HRI in construction. To identify the feasibility of deictic gestures in the
construction domain and find applicable solutions for improving performance, this study aims to extend current knowledge on the perfor-
mance in communicating positional information using deictic gestures by investigating the effects of spatial characteristics on spatial ref-
erencing, focusing on the target configuration, target distance, and relative position of human and robot. We observed that the recognition and
estimation of deictic gestures were affected by the target plane, target position, and the target layout and that the robot performance was
significantly reduced as the distance between the human and robot increased. The findings of this study demonstrate the challenges in spatial
referencing within a large-scale environment and highlight the need for bidirectional communication in HRI. DOI: 10.1061/JCEMD4.
COENG-12997. © 2023 American Society of Civil Engineers.
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Introduction

Robotic technologies are envisioned as a promising alternative for
the construction industry, which constantly suffers from stagnant
productivity and a shortage of skilled workers (Gharbia et al.
2020). Recent advances in artificial intelligence (AI) and AI-based
perceptual and manipulative abilities in robotics have led to an
unprecedented increase in robots’ performance. As a result, robots
have been introduced in many onsite construction tasks that benefit
from their ability to detect minor deviations, handle heavy and
hazardous building elements, and precisely repeat defined paths
(Hentout et al. 2019; Wang et al. 2021). Examples include semi-
automated bricklaying robots (FBR 2021), rebar-tying robots
(Construction Robotics 2021), site layout robots (Civ Robotics
2021; Dusty Robotics 2021), and three-dimensional (3D) printing
robots (COBOD 2021; MX3D 2021).

However, the employment of such robots in real construction
job sites is still limited due to the unstructured and dynamic nature
of construction environments (Carra et al. 2018; Feng et al. 2015;

Wang et al. 2021). When deployed onsite, robots are often faced
with site congestion and a multitude of interactions among work-
ers, materials, and equipment, resulting in degraded performance
or even robot failures (Park and Cho 2017). In these situations,
robots must frequently adapt and change their workflows and
methods (Follini et al. 2021). This underlines the importance of
the in situ improvisations of humans since compared to robots,
humans are more competent in making adaptive decisions based
on perceptual understanding and previous work experiences
(Wang et al. 2021). In this context, there is a growing need for
direct and effective communication of in situ improvisations be-
tween human workers and robots. Nevertheless, state-of-the-art
human–robot interaction (HRI) methods in construction (e.g., tele-
operation using joysticks) are inefficient in terms of exchanging
construction workers’ improvisations (Kyjanek et al. 2019; Roldán
et al. 2019; Wang et al. 2021).

During the last few decades, natural communication has been a
central issue in human–robot interactive technology (Li 2020;
Tölgyessy et al. 2017). Inspired by human-human interaction (HHI)
methods, many previous studies implemented two main techniques
for HRI: speech and gesture. Using speech based on natural lan-
guage understanding is the most convenient, yet in construction
environments, speech may be interfered with by the noise of con-
struction equipment and activities. In such environments, the use of
deictic gestures is an ideal way around this problem. Deictic ges-
tures are the most important form of gesture in task-based contexts
owing to their key role in expressing semantic information about the
shared environment (Alibali 2005; Williams et al. 2019; Yongda
et al. 2018). They are also highly operable, nonintrusive, and
intuitive since they do not require additional devices such as control
pads or wearable sensors (Li 2020).

Nevertheless, in construction job sites, there are still many
challenges in using deictic gestures for HRI. First, construction
operations often involve distal, adjacent, and noncoplanar objects.
For example, PVC panels, widely used as a cladding material, are
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installed into grid openings in a ceiling frame or on walls or
existing panels with a minimum gap between the adjoining panels
(Liang et al. 2020). Such distal, adjacent, and noncoplanar targets
may pose a significant effect on the recognition and estimation
of deictic gestures because deictic gestures often suffer from lim-
ited coverage. Moreover, in shared workspaces on construction
job sites, workers and robots form various human–robot relation-
ships, resulting in constant changes in the relative positions
between them. However, the reliability and readability of the ex-
changed spatial information are significantly affected by the
relative position of the human (Gustavsson et al. 2018; Mayer
et al. 2020). These challenges are critical because such spatial
information, including geometric entities of a building component
[domains, surfaces, edges, points on a surface, and bounding
spaces (e.g., zone)] or geometric relationships between them (Kim
and Cho 2015), is one of the most fundamental factors for in situ
improvisations. For instance, when a worker intends to provision-
ally install a drywall panel for the ceiling, they should be aware of
the information on possible ceiling joints to drive the fasteners
in based on their spatial cognitive abilities. Meanwhile, these
challenges may explain why, despite the advantages of deictic
gestures, the application of the developed human–robot interface
has been limited to specific settings that fundamentally deviate
from construction environments, such as close-proximity objects
located on tables (Jevtić et al. 2019; Jirak et al. 2021; Weerakoon
et al. 2020; Weng et al. 2019; Whitney et al. 2017) or head-up
displays (HUDs) (Brand et al. 2016).

To this end, this study aims to investigate to what extent and how
spatial referencing using deictic gestures to communicate posi-
tional information about the construction objects is influenced
by spatial characteristics, namely, target positions (with different
target configurations) and human positions relative to the robot.
In this study, the latest deictic gesture-based HRI method was
adopted that utilizes the vision-based human pose estimation tech-
nique to estimate pointing directions and positions. We developed
and performed spatial communication tasks for panel installation
work, in the contexts of HRI and HHI. Finally, we evaluated the
robot’s performance in spatial communication and compared it to
human performance. Based on the findings, we discuss the envi-
sioned applications of deictic gestures to construction operations
and implications for human–robot communication techniques in
construction. This study contributes to the body of knowledge that
addresses the need for spatial communication between the human
worker and robot for onsite robot deployment.

Background

Human–Robot Interaction in Construction

HRI can be defined as the exchange of information and actions be-
tween a human and a robot to perform a given task by means of a
user interface [ISO 8373:2021 (ISO 2021)]. The goal of HRI is to
enable synergistic teams of humans and robots in which team mem-
bers perform tasks according to their abilities (Burke et al. 2004).
HRI is integrated into collaborative robots for various industrial
applications, such as assembling (Feng et al. 2015; Grahn et al.
2018; Heydaryan et al. 2018; Makris et al. 2016), machine tending
(Annem et al. 2019), packaging (Zwicker and Reinhart 2014), and
palletizing (Ganglbauer et al. 2020; Lamon et al. 2020). According
to Malik and Bilberg (2019), human–robot relationships in HRI can
be classified into four categories: (1) coexistence—the human and
robot work alongside each other but do not share a workspace,
(2) synchronized—the human and robot share a workspace but only

one of them is present at any one moment, (3) cooperation—the
human and robot share a workspace and are present at the same
time but work independently, and (4) collaboration—the human
and robot share a workspace, are present at the same time, and work
simultaneously.

HRI is an emerging research field in construction because
it is one of the keys to the successful implementation of construc-
tion robotics (Adami et al. 2022). A large number of high-
performance robots are in development or are being deployed
on construction job sites. Construction workers have serious con-
cerns about technological unemployment and worry that their jobs
might be replaced by robots or that they would not be able to ad-
just to automation (Kim et al. 2022). Implementing an appropriate
level of HRI could be one of the viable solutions to the concerns of
construction workers (Kim et al. 2022). However, HRI methods in
construction are still under development and are inefficient in
terms of exchanging construction workers’ improvisations. They
usually suffer from accuracy reduction and time delays (Roldán
et al. 2019; Wang et al. 2021) and require humans to continuously
perform manual tasks during the whole work process (Wang et al.
2021).

Preprogramming has the lowest level of robot autonomy yet is
the most common HRI method in construction that involves pro-
gramming a robot with a predefined sequence of activities (Liang
et al. 2021b). Preprogramming accounts for most of the HRI meth-
ods in the manufacturing industry, environments in which the ro-
bots perform the same tasks repetitively with minimum human
intervention (Inkulu et al. 2022). In the construction industry, pre-
programming is widely employed in operations such as welding
(Tavares et al. 2019) or assembly (Ding et al. 2020; Feng et al.
2015), often supported by building information modeling (BIM).
3D BIM models are manually created by human labor or recon-
structed through 3D vision techniques and tasks are allocated sep-
arately for human operators and robots based on BIM models.
Despite the high accuracy of this method, it faces some challenges
in expressing real-time onsite information due to the dynamic and
unstructured nature of a construction site (Ding et al. 2020), making
this method time-consuming and burdensome since the user must
manually update BIM models during operation to handle in situ
variations.

Teleoperation has been suggested as an alternative to BIM-
based preprogramming due to its capability in handling unexpected
situations (Liang et al. 2021b) and therefore has been deployed in
dynamic and unsafe construction operations such as excavation
(Okishiba et al. 2019) and maintenance (David et al. 2014; Koh
et al. 2021). Teleoperation involves real-time control of a robot’s
motion by a human operator from a remote site through a commu-
nication channel [ISO 8373:2021 (ISO 2021)] (Zhou et al. 2020).
Yet, the difficulties for novice users in the operation of the robots
utilizing the traditional communication technologies of teleopera-
tion (i.e., joysticks and control pads) led to an increasing number
of investigations on the intuitive and user-friendly human–robot
communication technologies (Chen et al. 2022; David et al. 2014;
Roldán et al. 2019).

Deictic Gesture-Based Human–Robot Interaction

Deictic gestures, often referred to as pointing gestures, are a form of
gesture commonly performed by extending the arm and index fin-
ger (Mayer et al. 2020). Deictic gestures are one of the most fun-
damental techniques of HHI (Oosterwijk et al. 2017). Humans learn
to use deictic gestures from infancy and continue to rely on them
as a core means of communication (Butterworth 2003; Williams
et al. 2019). In particular, deictic gestures are an effective nonverbal
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communication technique for establishing joint attention based on
mutual understanding of an environment in which people find it
difficult or impossible to communicate through verbal descriptions,
e.g., noisy factory environments (Williams et al. 2019). Currently,
deictic gestures are considered one of the most acceptable tech-
niques to support the exchange of spatial information in complex
environments and are used for such things as describing the shape
of an object, giving a location in space, or giving directions
(Alibali 2005).

Deictic gestures have been widely accepted for HRI or human-
computer interaction (HCI), beginning with the preliminary work
of Bolt (1980), in which deictic gestures were used as an input
for the HCI to move virtual objects on a screen (also known as
Put-That-There). Recent applications of deictic gestures in HRI in-
clude indicating target points (Dhingra et al. 2020; Lai et al. 2016),
labeling information on areas (Zamani et al. 2018), selecting ob-
jects for object-fetching or attention-directing tasks (Canal et al.
2016; Sauppé and Mutlu 2014; Whitney et al. 2017), and setting
a destination for robot navigation (Gromov et al. 2020; Medeiros
et al. 2021; Tölgyessy et al. 2017).

Nevertheless, a major challenge of using deictic gestures for
HRI is their limited performance. Jevtić et al. (2019) compared
two different interaction modalities for robot-assisted dressing:
speech and gesture command. The experimental results confirmed
that the pointing gesture command has significantly worse perfor-
mance compared with speech input in terms of the user workload
(i.e., physical demand, performance, and effort) and robot perfor-
mance (i.e., number of corrections). Also, Jevtić et al. (2015)
compared three different interaction modalities for mobile robot
guidance in an indoor environment: direct physical interaction,
person following, and pointing control. The experimental results
confirmed that pointing control has significantly worst perfor-
mance among the three interaction modalities in terms of user
workload, task completion time, and accuracy, whereas direct
physical interaction showed the highest performance. Mayer et al.
(2015) showed that even with the motion capture system that
estimates the absolute position of markers attached to users,
the interface had limited accuracy in selecting target points on
a wall display. These investigations show the general performance
of the deictic gesture as an input modality for HRI systems, yet
performance in a large-scale construction environment has not
been studied in depth. Moreover, to expand the opportunities for
utilizing deictic gestures for human–robot spatial communication
in construction, it must be verified that the robot performance
would reach human performance in identical conditions.

Deictic Gesture Recognition

Deictic gesture-based HRI relies on accurate and robust deictic
gesture recognition. Deictic gesture recognition techniques can be
divided into two main categories: sensor-based approach and
vision-based approach. The sensor-based approach measures elec-
trical muscle stimulation (EMS) with an electromyography (EMG)
(Ameri et al. 2018; Navas Medrano et al. 2020), the specific force,
angular rate, and orientation of the arm with inertial measurement
units (IMUs) (Gromov et al. 2018, 2019, 2020; Walkowski et al.
2011), or motion data with data gloves (Kumar et al. 2012) and
reconstructs 3D rays in the user’s own local reference frame using
the motion signals (Gromov et al. 2018). The sensor-based ap-
proach is usually an accurate, sensitive, and reliable method owing
to its direct acquisition of a human deictic posture. However, the
sensor-based approach may not be considered a realistic method for
onsite applications as it relies on the existence of a wearable data

acquisition device, resulting in a lack of convenience and user-
friendliness (Li et al. 2019; Medeiros et al. 2021).

The vision-based approach collects images with one or more
cameras, e.g., monocular cameras (Nickel and Stiefelhagen 2003),
stereo cameras (Keskin et al. 2003), or RGB-D cameras (Dhingra
et al. 2020), and reconstructs 3D rays from the estimated 3D
human pose in the surrounding space using the user actions or
state information. The vision-based approach does not usually re-
quire the wearing of external devices and has the benefit of being
natural, nonintrusive, intuitive, and highly operable. Nevertheless,
the vision-based approach has unavoidable problems, such as im-
age noise mainly caused by illumination and occlusion by other
objects or users (Li 2020).

The deictic gesture recognition technique used in this study
belongs to the category of vision-based approach using an RGB-D
camera for human pose estimation. RGB-D cameras are widely used
for data collection in HRI studies due to their affordability and suf-
ficient information retrieved from 3D sensing of a robot’s surround-
ing environment (Tashtoush et al. 2021). Using RGB-D cameras for
deictic gesture recognition provides numerous advantages, includ-
ing higher robustness to variations in lighting conditions and accu-
racy in human contour extraction compared with RGB cameras
(Li 2020).

Methodology

To evaluate the impact of spatial characteristics on spatial refer-
encing using deictic gestures during HRI in construction, we de-
veloped a spatial communication task that involved one or more
addressers (human pointers), addressees (human and robot ob-
servers), and referents (panels) (see Fig. 1). HRI in construction
can involve the communication of many types of information in
both human-to-robot and robot-to-human directions (Weng et al.
2019). This study is focused on the human-to-robot communication
of positional information on a target panel for highlighting where
in the workspace (wall and ceiling) the robot should execute its
panel installation work. This study aims to evaluate both robot per-
formance in spatial communication in HRI contexts and human
performance in HHI contexts and compare the results. Therefore,
we had a human observer for every robot’s observation position
while maintaining the other experimental conditions.

The experimental design is focused on how the recognition and
estimation of deictic gestures were affected by the target configu-
ration, target distance, and relative position of humans and robots.
Information about these factors is often involved in reasoning about
target locations within a large-scale environment. Referencing an
object, for example, requires reasoning about its distance and di-
rection, which can be determined relative to a human or robot mov-
ing through the surrounding environment, as well as its spatial
features (Vasilyeva and Lourenco 2012). These spatial characteris-
tics are specific to construction, compared to the scope of prior
studies in related fields such as robotics and computer science.
To account for distal, adjacent, and noncoplanar objects frequently
encountered in construction, the present study explored target
positions with different target configurations. Furthermore, given
the dynamic nature of construction environments, the positions of
humans relative to robots were manipulated.

First, we manipulated the target configuration by altering the
panel layouts and sizes to examine to what level of pointing diffi-
culty the interface showed acceptable recognition accuracy. Second,
we manipulated the target distance by changing the distance
between the pointer and the panels. Last, we manipulated the rel-
ative position of the pointer and observer by changing the relative
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distance and angle of the observer in relation to the pointer. Mean-
while, we manipulated the number of pointers and human observers
to disambiguate differences in individuals. The experimental con-
ditions for each experiment are as follows.

Experiment 1 (E1): Multiple pointers performed pointing tasks
at a fixed position, and the robot faced the pointer at a fixed posi-
tion. Large-sized panels were installed on both wall and ceiling in a
horizontal grid layout without space between them.

Experiment 2 (E2): A single pointer performed pointing tasks in
three different positions. The robot and human observer faced the
pointer at a fixed position. Small-sized panels were installed on the
ceiling in both horizontal and vertical grid layouts without space
between them.

Experiment 3 (E3): A single pointer performed pointing tasks at
a fixed position. The robot and multiple human observers faced the
pointer in nine different positions. Small-sized panels were in-
stalled on the ceiling in both horizontal and vertical grid layouts
without space between them.

Hardware Setup

The robot used for the experiments is shown in Fig. 2. The robotic
platform is Turtlebot v2 that comprises a mobile base called
Kobuki (Yujin Robot, Seoul, Republic of Korea), a front-mounted
RGB-D camera, and computing hardware. The Intel RealSense
Depth Camera D435 (Intel Corporation, Santa Clara, California)
was selected as an RGB-D camera, which can capture RGB and
depth images simultaneously. It was connected to Intel Next Unit
of Computing (NUC), a small form factor computer, with Intel
Core i3-8109U CPU @ 3.60GHz and 32GB RAM. The system
was implemented in a robot operating system (ROS).

Experimental Setup

The participants were asked to perform a spatial communication
task for each experiment. At the start of each trial, the pointer
was visually informed about the panel number. The pointer was
asked to reference the target panel with a pointing gesture and hold
until the next panel number was shown. No further instructions
were given to the pointer (i.e., to refer to the center of the panel).
Meanwhile, the observer was asked to infer the correct panel num-
ber without informing the pointer to eliminate the influence on
further pointing motions of the pointer. When the next panel num-
ber was presented to the pointer, the pointer returned to the initial
posture and repeated the previous steps. We set the duration of each
trial as 5 s.

Three experiments were conducted in a laboratory setup. The
experimental setup of Experiment 1 is depicted in Fig. 3(a). Five
panels with an equal size of 0.7 × 0.7 m were installed side by side
on both ceiling and wall. The robot was located at Position O1, and
the front-mounted RGB-D camera faced the pointer at a height of
0.7 m and roll angle of 90° (the positive z-axis points forward). The
pointer stood at Position P1, 3.0 m away from the RGB-D camera.
All the intrinsic and extrinsic parameters were identified and used
for RGB-D camera calibration. Four right-handed participants
(two male and two female, ages 20–29) were asked to perform the
spatial communication tasks for Experiment 1. All the participants
were assigned the role of pointer. No observers were involved in
Experiment 1. Each participant performed 130 trials, grouped into
13 blocks. A single block consisted of 10 trials: 5 ceiling panels
(C1–C5) and 5 wall panels (W1–W5).

The experimental setup of Experiment 2 is illustrated in
Fig. 3(b). Nine panels with an equal size of 0.6 × 0.6 m were in-
stalled on the ceiling in a 3 × 3 grid layout. The robot was located at

Fig. 2. Robotic platform used in this study.

(a) (b) (c)

Fig. 1. Spatial communication task: (a) photograph of the task setup; schematic illustration of the task setup in (b) HRI context; and (c) HHI context.
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Position O1, 1.0 m away from the world origin, and the RGB-D
camera faced the pointer at a height of 1.22 m and roll angle of
83°. The observer also stood at Position O1. The pointer stood
at three different positions (P1–P3), each position with a different
distance to the world origin (2–4 m, 1 m steps), which was located
at the projected position of the center point of the C5 panel. Two
right-handed participants (two males, ages 25–27) were recruited
to participate in Experiment 2. One of the participants was as-
signed the role of pointer, while the other was assigned the role
of observer. For each pointing position, the pointer performed
90 trials, grouped into 10 blocks. A single block consisted of nine
trials: nine ceiling panels (C1–C9).

The experimental setup of Experiment 3 is similar to the ex-
perimental setup of Experiment 2 [see Fig. 3(c)]. However, in Ex-
periment 3, the pointer stood at a fixed Position P1, while the
positions of the observers and robot varied from O1 to O9, each
position with a different distance (2–4 m, 1 m steps) and angle
(0°–90°, 45° steps) to the pointer. Eleven right-handed participants
(seven male and four female, ages 24–32) were recruited to par-
ticipate in Experiment 3. One of the participants was assigned the
role of pointer, and the others were assigned the role of observer.
For each observation position, the pointer performed 45 trials,
grouped into 10 blocks. A single block consisted of nine trials:
nine ceiling panels (C1–C9).

Gesture Recognition and Pointing Target Estimation

Fig. 4 shows the deictic gesture-based HRI method adopted in this
study, which utilizes human pose estimation with deep learning. In
this method, the 3D human skeletal data extracted from the RGB

and depth images are used to detect deictic gestures. This study
employs OpenPose (Cao et al. 2021), a real-time multiperson two-
dimensional (2D) pose estimation library, to estimate the 2D skel-
etal data. The BODY-25 model from the OpenPose library detects
25 human body joints from each RGB image frame. The pixel co-
ordinates ðx; yÞ from the 2D image are transformed into correspond-
ing world coordinates ðX;Y;ZÞ in 3D space by inverse perspective
projection (Kim et al. 2015) [Eq. (1)]:

½X;Y;Z; 1�T ¼ P−1½x; y; 1�T ð1Þ

where P ¼ 3 × 4 camera projection matrix. The 3D human pose
obtained from the projection transformation is then utilized for
estimating the pointing direction. In the estimation of the pointing
direction, three 3D coordinates of the body joints are used:
(1) shoulder Ps, (2) elbow Pe, and (3) wrist Pw. We used wrist po-
sition instead of fingers to enhance the computation efficiency, con-
sidering the onsite applications (Sprute et al. 2018). Given the
position of the three body joints, the elbow joint angle θ is defined
as Eq. (2)

cos θ ¼ vsevsw
jvsejjvswj

ð2Þ

where vse = vector from the shoulder to the elbow joint; and vsw =
vector from the shoulder to the wrist joint. If θ is below a predefined
angle, the system assumes that the person is stretching their arm for
pointing. The pointing direction is defined by a straight line starting
from the shoulder to the wrist joint [Eq. (3)]:

p ¼ Ps þ dðPw − PsÞ ð3Þ

(a) (b) (c)

Fig. 3. Experimental environments of (a) Experiment 1; (b) Experiment 2; and (c) Experiment 3.

Fig. 4. Target panel estimation process of the current HRI method using deictic gestures.
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where d ∈ R. The pointing position Pp on a ceiling or wall is
calculated by the ray-plane intersection using Eq. (4):

d ¼ ðP0 − PsÞ · n
ðPw − PsÞ · n

ð4Þ

where P0 = arbitrary point on the plane; and n = normal vector of
the plane. The target panel is then predicted using the pointing po-
sition. Let Pi be the center point of the target panel index i ∈ N.
A panel with the closest Euclidean distance from the center point
is selected as a target panel it, which is defined as Eq. (5)

it ¼ argmin
i

ðjPp − PijÞ ð5Þ

This study adopts two techniques proposed from the state-of-
the-art HRI, commonly used for enhancing performance. First, only
stabilized pointing motions were used for evaluation (Dhingra et al.
2020). Those motions were extracted by excluding the first and
fourth quartiles of the candidate frames. Second, the pointing cal-
ibration was performed before the main experiments. The estimated
pointing positions may differ significantly from what the pointer
intended because the pointing movements and their trajectories
may vary with individuals (Jevtić et al. 2019; Navas Medrano
et al. 2020). Therefore, the pointing calibration locations were cali-
brated to compensate for the estimation error. In the calibration
phase, the participants were asked to point at every corner panel
once (C1, C4, C7, and C9). For each corner panel, the mean x- and
y-coordinates of the pointing position are calculated using all esti-
mated positions for a single pointing task. The parameters of the
linear fitting function are then computed using the calculated mean
2D coordinates and the ground truth 2D coordinates. The linear
regression model was applied for the collected data points for
evaluation.

Evaluation

We used two common metrics for HRI to evaluate the performance
of deictic gestures for spatial communication (Steinfeld et al.
2006). To measure recognition accuracy, we use the F1-score,
which is calculated by Eqs. (6)–(8)

F1-score ¼ 2 × Precision × Recall
Precisionþ Recall

ð6Þ

Precision ¼ TP
TPþ FP

ð7Þ

Recall ¼ TP
TPþ FN

ð8Þ

For each pointing task, the true positive (TP) is the case in which
the estimated position is classified as a correct target panel; the false
negative (FN) is the case in which the estimated position is clas-
sified as other target panels; the false positive (FP) is the case in
which the subject is pointing at other target panels; and the true
negative (TN) is the case in which the subject is pointing at other
target panels but classified correctly.

To measure the point estimation accuracy, we used the deviation
from the target, which is defined as the Euclidean distance between
the estimated pointing position Pp and the center point of the target
panel Pt [Eq. (9)]. We assumed that when asked to refer to a target
panel, the participants would tend to point at its center

ϵ ¼ jPp − Ptj ð9Þ

Results

A total of 1,195 pointing trials (520 trials in Experiment 1, 270
trials in Experiment 2, and 405 trials in Experiment 3) were evalu-
ated in an offline setting. In the analysis for each experiment, trials
were averaged for each experimental condition and the mean values
were put into a statistical analysis.

Experiment 1

There were several differences in the performance depending on
the locations of the panels. First, the mean deviation from the
targets of the ceiling panels [C1–C5; M ¼ 1.125, SD ¼ 0.263;
Fig. 5(a)] was significantly higher than the wall panels [W1–W5;
M¼ 0.410, SD¼ 0.174; Fig. 5(b)], tð80.502Þ¼ 1.702, p < 0.001.
Meanwhile, the mean F1-score did not significantly differ (ceiling:
M ¼ 0.815, SD ¼ 0.256 versus wall: M ¼ 0.895, SD ¼ 0.187),
tð4,384.3Þ ¼ 60.276, p ¼ 0.093. Second, the mean deviation from
the targets of the side panels (C1/C5 and W1/W5; M ¼ 0.836,
SD ¼ 0.241; darker box plot in Fig. 5) was significantly higher
than the panels near the center (C2–C4 and W2–W4; M ¼ 0.721,
SD ¼ 0.210; lighter box plot in Fig. 5), tð4,292.9Þ ¼ 4.9359,
p < 0.001. Again, the mean F1-score did not show a significant
difference (side: M ¼ 0.881, SD ¼ 0.199 versus center: M ¼
0.838, SD ¼ 0.243), tð3Þ ¼ 2.5046, p ¼ 0.087. Last, the experi-
mental results were not specific to any pointer; the results of the
one-way ANOVA did not present a significant effect of the indi-
vidual differences on both the deviation from the target, Fð1; 38Þ ¼
1.302, p ¼ 0.261, η2p ¼ 0.033 and the F1-score, Fð1; 88Þ ¼ 0.186,
p ¼ 0.668, η2p ¼ 0.002.

Experiment 2

We observed three main findings from the evaluation results of
Experiment 2. First, the robot performance tended to be higher
when the pointer was closer to the target; the results of the one-
way ANOVA showed a significant effect of the target distance
on the mean F1-score (unfilled dots in Fig. 6), ð1; 25Þ ¼ 42.27,
p < 0.001, η2p ¼ 0.628 and on the deviation from the target,
Fð1,261Þ ¼ 106.2, p < 0.001, η2p ¼ 0.289. Fig. 7 shows the center
point of each target panel (Ground truth), average estimated posi-
tions (Predicted), and their deviations from the target for three tar-
get distances. The results showed that the mean deviation from the
target was lower than 0.3 m, half the width or height of the panel,
when the target distance was 1 or 2 m. Thus, the estimated positions
mostly lay within the target panels under such conditions. Second,
the target distance also had a significant effect on the F1-score of
the human observer, Fð1; 25Þ ¼ 18.75, p < 0.001, η2p ¼ 0.429, as
shown by the filled dots in Fig. 6. Moreover, the results of the
paired t-test showed no significant difference between the HRI
and HHI contexts on the F1-score, tð2Þ ¼ 1.859, p ¼ 0.204; pre-
cision, tð2Þ ¼ 1.814, p ¼ 0.211; and recall, tð2Þ ¼ 2.078, p ¼
0.173. Last, the human observer was more resistant to the change
in target distance compared to the robot; while the distance in-
creased from 1 to 3 m, the mean F1-score of the human observer
decreased by 24%, whereas the mean F1-score of the robot de-
creased by 55% (see Fig. 6).

Experiment 3

We observed three main findings from the evaluation results of
Experiment 3. First, the results of the paired t-test showed that
the mean F1-scores of all nine observation positions did not sig-
nificantly differ between the HRI and HHI contexts (human:
M ¼ 0.567, SD ¼ 0.097 versus robot: M ¼ 0.569, SD ¼ 0.251),
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Fig. 6. Recognition accuracy of the human observer and robot (Experiment 2).

(a) (b)

Fig. 5. Deviation from the target of the (a) ceiling panels (C1–C5); and (b) wall panels (W1–W5).

Fig. 7. Estimated positions and their deviations from the target (Experiment 2).

© ASCE 04023049-7 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2023, 149(7): 04023049 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

SE
O

U
L

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 L

IB
 o

n 
04

/2
9/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



tð8Þ ¼ 0.046, p ¼ 0.964. Likewise, the mean precision (human:
M ¼ 0.599, SD ¼ 0.034 versus robot: M ¼ 0.590, SD ¼ 0.191),
tð8Þ ¼ 0.135, p ¼ 0.896 and recall (human: M ¼ 0.562, SD ¼
0.039 versus robot: M ¼ 0.591, SD ¼ 0.175), tð8Þ ¼ 0.499, p ¼
0.631 did not show significant differences. Nevertheless, the dif-
ference in the standard deviation of the results suggested that
humans were more consistent in their performance compared
to the robot. Second, the effect of the distance between the pointer
and the observer (hereafter referred to as distance) and the angle
between the pointer and the observer (hereafter referred to as
angle) on the performance was only significant for the robot.
We conducted a two-way ANOVA to verify whether the robot
performance was significantly influenced by distance × angle.
The results confirmed a significant effect of distance × angle
on the deviation from the target [distance, Fð1,381Þ ¼ 37.23,
p < 0.001, η2p ¼ 0.089; angle, Fð1,381Þ ¼ 10.53, p < 0.01, η2p ¼
0.027; distance × angle interaction, Fð1,381Þ ¼ 10.4, p < 0.01,
η2p ¼ 0.027]. Fig. 8 shows the center point of each target panel
(Ground truth), average estimated positions (Predicted), and their
deviations from the target for three distances and three angles.

The estimated positions generally lay within the target panels
when the distance was 2 m, whereas in the observation Position
O8, the estimated positions clearly deviate from the target
panels, with increased mean deviation from the target up to
0.997 m. The robot’s recognition accuracy according to distance
is shown by the unfilled dots in Fig. 9. It was confirmed that only
the distance had a significant effect on the F1-score [distance,
Fð1; 77Þ ¼ 42.444, p < 0.001, η2p ¼ 0.355; angle, Fð1; 77Þ ¼
2.896, p ¼ 0.093, η2p ¼ 0.036; distance × angle interaction,
Fð1; 77Þ ¼ 2.387, p ¼ 0.126, η2p ¼ 0.03]. Meanwhile, the filled
dots in Fig. 9 show the recognition accuracy of the human
observers. We conducted a two-way repeated-measures ANOVA
(RM-ANOVA) to verify whether the human performance was
significantly influenced by distance × angle. The results con-
firmed no significant effect of distance × angle on the F1-score
[distance, Fð2; 18Þ ¼ 0.204, p ¼ 0.817, η2p ¼ 0.003; angle,
Fð1.23; 11.07Þ ¼ 1.489, p ¼ 0.256, η2p ¼ 0.025; distance × angle
interaction, Fð4; 36Þ ¼ 0.536, p ¼ 0.71, η2p ¼ 0.02]. Last, the
mean F1-scores of each human observer did not differ signifi-
cantly, Fð1; 79Þ ¼ 2.099, p ¼ 0.151, η2p ¼ 0.026.

Fig. 8. Estimated positions and their deviations from the target (Experiment 3).
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Discussion

Deictic gestures are one of the most frequently used HHI tech-
niques due to their intuitive nature and quality of communication.
Nevertheless, the limited accuracy of humans when pointing targets
in remote locations is widely accepted and it poses some challenges
for both humans and robots in leveraging deictic gestures for HRI
(Mayer et al. 2020). Therefore, it is important to identify the fea-
sibility of deictic gestures and find applicable solutions for improv-
ing performance. This study aims to extend current knowledge on

the performance in communicating positional information using
deictic gestures in the construction domain. We evaluated the es-
timation and recognition accuracy of spatial communication with
experimental tasks developed in this study, which involved human
pointers, human observers, and a robot. There are two main find-
ings regarding the challenges in spatial communication using dei-
ctic gestures in large-scale environments. First, the effects of the
target plane, target angle from the pointer, distance between the
pointer and the target, and target layout contribute to the challenges
in both pointing targets and interpreting their locations within

Fig. 9. Recognition accuracy of the human observers and the robot (Experiment 3).
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large-scale environments like construction sites. Second, for the
ceiling targets, HRI performance was more prone to change in
the positional relationship compared with HHI performance, espe-
cially to change in the distance between the pointer and the
observer.

The mean deviation from the target was decreased by 31.07%
through the alteration in the target plane (from ceiling to wall) by
13.76% through the difference in the target angle (from side to
center) and by 82.79% through the difference in the target distance
(from 3 to 1 m). One possible explanation of these tendencies,
which were common in all participants, may lie in the human vision
via pinhole projection, in which the 3D visible world (on the world
coordinate system) is projected onto a 2D projection plane (2D
retina in the case of the human); this plane is focal length d away
from the projective center along with the Zh axis (on the human
coordinate system), the gaze direction (Sharma et al. 2020). Fig. 10
shows schematic illustrations of the experimental environment of
Experiments 1 and 2. A0 and A1 refer to the projected area of the
target panels, perpendicular to the gaze directions Z0 and Z1, re-
spectively (this study assumed that a person gazed at the center
of the target panels when pointing). The differences in target planes
and angles elicit the differences in the projected area: wall or center
panels have larger projected areas A0 compared with the projected
areas of the ceiling or side panels A1. We concluded that a smaller
projected area hindered humans from pointing precisely while
maintaining consistency. In addition, the panel layout had an influ-
ence on the robot’s recognition accuracy. Under the same condition
of the spatial communication excluding the layout of the panels, in
other words, comparing the ceiling pointing tasks in Experiment 1
and observation Position O4 in Experiment 3, the mean F1-score
dropped by 19.26% when the panels were installed both in a hori-
zontal and vertical layout (E1: M ¼ 0.815, SD ¼ 0.256; E3:
M ¼ 0.658, SD ¼ 0.151). These results are in line with previous
evaluations on humans’ limited pointing performance on distant
targets in collaborative virtual environments (CVEs) (Mayer et al.
2018, 2020). We add to that literature by showing that similar tend-
encies appear in the real world and that humans’ limited pointing
accuracy is also influenced by the target plane, the horizontal angle
between the pointer and the target, and the target layout.

The mean F1-score of each experimental condition did not show
a significant difference between HHI and HRI in both Experiments
2 and 3. This indicates that regardless of the changes in pointing
positions or observation positions, the robot’s recognition accuracy
in estimating the pointing position in the ceiling is mostly com-
parable to that of humans. Moreover, among nine observation
positions in Experiment 3, no significant differences in human

performance were observed. In other words, humans tend to have
a consistent recognition accuracy for the ceiling targets regardless
of the observation positions. Meanwhile, in the case of the robot,
we observed that the deviation from the target was significantly
influenced by both the distance and angle between the pointer
and the robot. Most importantly, the distance between the pointer
and the robot also had a significant effect on the robot’s recognition
accuracy. In particular, the accuracy dropped significantly at a dis-
tance of 4 m. This is not surprising because 0.3–3 m is specified as
the ideal range for the RGB-D camera used in this study (Intel
2022). Therefore, we show that securing a close distance from a
pointer is most effective and should be a priority for reliable per-
formance in communicating positional information with a robot.

The robot performance remained high at a pointer-robot angle of
90°, compared with an angle of 0° and 45°, in which the perfor-
mance dropped as the robot moves away from the pointer. We in-
terpret this as a result of the deictic gesture recognition based on the
pose estimation technique; the more right arm joints (shoulder, el-
bow, and wrist) utilized for the deictic gesture recognition that came
into the camera view without depth occlusion, the more likely the
system was to detect the exact position of the joints. The results
confirm the intuition of the low possibility of depth occlusion while
stretching the right arm for pointing at an angle of 90°, and thus, we
suggest positioning a robot at 90° from a pointer as another way of
enhancing the performance of human–robot spatial communication.

The pointing calibration showed a considerable improvement in
the mean deviation from the targets. Without pointing calibration, it
was observed that the mean deviation in Experiment 3 increased to
1.694 m from 0.449 m and the mean F1-score decreased to 0.064
from 0.569. Pointing calibration is generally considered one of the
components of the current HRI methods using deictic gestures.
However, in situations in which pointing calibration is unable to
be performed before the use of the interface, such low performance
could pose a major challenge in practical applications.

Envisioned Applications and Future Works

Deictic gestures are scalable for a wide range of HRI in construc-
tion in terms of their capability to represent various types of spatial
information. These include target points and areas, as well as target
objects. First, spatial communication on target points can be one of
the envisioned applications in construction. Deictic gestures can be
applied to construction tasks that require the positioning of end-of-
arm tools (EOATs) at start points of seams, e.g., robotic welding
(Lei et al. 2020) and caulking (Lundeen et al. 2017). They can also
be used for tasks that need EOATs to be positioned at discrete

(a) (b) (c)

Fig. 10. The top and side views of the experimental environment: (a) center versus side panels; (b) wall versus ceiling panels; and (c) 3 m versus 1 m
target distance.
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locations in a workspace, e.g., robotic drilling and anchoring
(Gawel et al. 2019). Furthermore, information about target areas
can be delivered by selecting the potential edges of a workspace
using deictic gestures. The target areas can be floors, ceilings,
walls, or facades, where construction tasks such as robotic painting
(Asadi et al. 2018) or plastering (Mitterberger et al. 2022) are per-
formed. In addition to target points and areas, deictic gestures can
be employed to pick-and-place tasks in construction, e.g., robot-to-
human construction material handover (Liu et al. 2021) and waste
collection on sites (Chen et al. 2022).

The panel installation work, the scope of this study, would be
another practical application of spatial communication on target ob-
jects. The workflow of human–robot collaborative panel installa-
tion is suggested by Liang et al. (2021a). This workflow begins
with the robot setup process in which the robot navigates to the
desired working station and acquires the geometric information
of the as-built structure using the scene understanding methods
(Liang et al. 2021a; Lundeen et al. 2017, 2019). Next, among the
reachable panel grids, the human worker indicates the target grid
location (Liang et al. 2021a). Then, the installation worker or robot
manipulates and places a panel at the specified location (Liang et al.
2020). Last, the human worker performs quality checks and man-
ually reworks if necessary (Liang et al. 2021a). Considering the
second step of the workflow, spatial communication between the
human and robot is needed to deliver the specified target location.
This study is focused on the deictic gesture-based HRI as a spatial
communication method.

Despite the high potential of the deictic gestures present as the
HRI technique, applying such a method for spatial communication
in the field is still challenging due to its low performance in large-
scale construction environments. It is recommended that further
research should be undertaken in consideration of the two-way
communication of the HRI assisted by real-time robot feedback.
As stated by Gromov et al. (2020), the lack of real-time robot feed-
back is one of the main reasons for low performance because the
user is informed about the pointing position perceived by the robot
only when a robot ends its motion, making it difficult for the user to
correct the pointing input. In this regard, Medeiros et al. (2021)
integrated visual feedback from the point of view of an unmanned
aerial vehicle (UAV) and showed that it could enhance the pointing
accuracy of users by allowing the users to review the location of the
referent inferred by the system. Whitney et al. (2017) showed that
social feedback from an item-fetching robot, such as asking ques-
tions to clarify the target object, could improve the accuracy of the
system by 11.1%. Furthermore, Sprute et al. (2019) used a laser
pointer as an interaction device to provide users with direct visual
feedback. The proposed method achieved high accuracy (84.6% of
the Jaccard index) and was proven to be applicable to novice users.
All the aforementioned studies confirmed the effectiveness of two-
way communication in improving performance.

Conclusion

This study investigated the effects of spatial characteristics on spa-
tial referencing using deictic gestures, focusing on the exchange of
positional information about panel objects in HRI and HHI con-
texts. The results of three experiments revealed that the recognition
and estimation of deictic gestures were influenced by the target
plane, target position, and the target layout and that the robot per-
formance was significantly reduced as the human–robot distance
increased. The robot achieved an F1-score of 0.895 in the wall pan-
els and 0.815 in the ceiling panels. In the ceiling pointing tasks with
a more complex target configuration, the F1-score of the robot

dropped to the minimum of 0.404, while humans ranged from
0.730 to 0.956. These results demonstrate the challenges in spatial
referencing within a large-scale environment and highlight the need
for exchanging feedback from a robot to employ deictic gestures
and robotics in construction work.

The findings of this study extend the body of knowledge in the
construction domain by providing significant implications on
gesture-based human–robot interfaces in construction job sites that
have recently garnered much interest. This study offers generaliz-
able and objective criteria for determining the level of precision
required for effective communication between humans and robots
using those gesture-based interfaces and suggests applicable solu-
tions for improvement. Furthermore, the physical settings of the
experiments are generalizable and representative and can be applied
in the field to investigate the effects of spatial characteristics on
human–robot communication.

However, we are aware that this study may have several limi-
tations. First, this study assumes that the participants would tend to
point at the center of the target panel. Nonetheless, this tendency
was observed in the experiments and was later confirmed verbally
by all participants, even though they were only instructed to refer to
the panel. Second, this study assumes that the robot has a full
understanding of its surrounding environment and workspace
geometry that is completely accurate with no measurement errors.
Future works are needed to investigate robot performance when the
robot must learn its surrounding environment. Next, the experi-
ments are conducted in one of the most ideal environments where
single-task construction robots for interior finishing tasks can
perform given tasks with minimum failure, i.e., an indoor environ-
ment with no other materials, equipment, and workers hindering
the robot’s field of view and workspace. Therefore, factors of con-
struction sites such as dust, moving objects, and occlusion were not
included in this study. In addition, while deictic gestures are one
of the universal gestures in construction sites, construction pro-
fessionals of the participants were not considered. However, such
an environmental setup that does not involve the abovementioned
factors would be less common in real construction sites. Last,
robots that actually perform construction operations were not de-
ployed in this study. Research into communicating in situ improv-
isations with colocated construction robots is currently in progress
by the authors.
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