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Abstract – 

As robots are envisioned to be deployed in 
construction job sites to work with humans, there is 
an increasing need for developing intuitive and 
natural communication between robots and humans. 
In particular, spatial information exchange is critical 
to navigating or delegating tasks to collaborative 
robots. However, such deictic gestures are inherently 
imprecise and ambiguous. Thus, it is challenging for 
robots to reason about the exact region of interest, 
especially in a cluttered large-scale construction 
environment. To address this limitation, this study 
evaluates the performance of spatial information 
exchange through the experiments based on pointing 
targets on the wall and ceiling, which are the most 
common workspaces in construction. We observed 
that the current deictic gesture-based method can 
estimate the pointed position on the wall and ceiling 
with a mean distance error of 0.767m, while the error 
tends to increase by 0.715m in the ceiling and 0.115m 
in the side panels. Our experimental results indicate 
that the deictic gesture-based method has some 
challenges in ceiling and side panel conditions, while 
the overall panel recognition shows acceptable 
performance. The findings of this study will help 
novice construction workers naturally and effectively 
communicate with robots by delivering spatial 
information on specific objects or regions in the 
shared workspace. 
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1 Introduction 
As robotic technologies have advanced, the focus of 

robot adoption has shifted from large-scale robotic 
platforms to small-scaled task robots [1]. These robots 
are designed for various applications and have shown 
possibilities of the collaboration of robots and humans in 
construction sites. As they interact with people during 

task execution, there is a growing need for a more 
intuitive and natural human-robot communication 
interface. In particular, spatial information exchange (e.g., 
target objects or regions of interest) is critical to 
navigating or delegating tasks to collaborative robots. 
Potential human-robot collaborative applications, for 
example, include controlling a robot to change its 
position [2], referring to a target object [3], and indicating 
target ceiling panel for installation [4] or target wall area 
for painting [5]. In human-human interactions, people 
often utilize deictic gestures to deliver spatial 
information, which are effective means to develop a 
mutual understanding of a referent with others [6]. 
Deictic gestures are especially beneficial for construction 
applications because they require no additional devices, 
and therefore are intuitive for novice users. 

However, deictic gestures are known to be inherently 
imprecise and ambiguous for both humans and robots. It 
is especially challenging for a robot to reason about the 
exact region of interest in an unstructured and cluttered 
construction environment. Construction tasks are carried 
out in a large-scale 3-dimensional (3D) environment; 
thus, it is necessary to share various dimensional and 
scaled spatial information (e.g., floor vs. wall vs. ceiling, 
centered vs. angled). Although several previous works 
showed the performance of gesture-based spatial 
information exchange for short-distance applications 
(e.g., table, wall, and floor [7]), it has not been evaluated 
in a comparatively large environment. Thus, this study 
aims to identify the challenges associated with the deictic 
gesture-based spatial referencing in a large-scale 
environment. This was done by evaluating the 
performance of spatial information exchange through the 
experiments based on pointing targets on the wall and 
ceiling, which are the most common workspaces in 
construction. The findings can guide and inform our 
approaches to developing collaborative construction 
robots supported with a natural human-robot interface. 
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2 Background 

2.1 Deictic Gesture-Based Spatial Referencing 
Deictic gestures are often referred to as “pointing 

gestures”, typically performed by extending the arm and 
the index finger [8,9]. In general, people often use 
pointing gestures to deliver spatial information to others. 
In other words, deictic gestures are fundamental to direct 
others’ attention to objects and help develop a mutual 
understanding of objects in space [10,11]. 

Deictic gesture-based spatial referencing has been 
explored substantially in previous works for developing 
and evaluating various spatial referencing models 
according to task requirements. This large body of work 
shares the same purpose: to solve the problem of 
interpreting deictic gestures in order to map the referent 
in the environment that the user wants to indicate [2]. 
Tölgyessy et al. [12] presented a spatial referencing 
method navigating a mobile robot to an endpoint marker 
on the ground floor defined by a pointing gesture of a 
human operator. The suggested method shows the precise 
positioning of all the entities included in the interaction 
in 3D space. Jevtić et al. [13] employed pointing 
recognition for selecting shoes placed on the platform in 
front of the user. Furthermore, they exploited the concept 
of multi-modality to develop personalized interaction 
with a robot assistant for assisted dressing. Mayer et al. 
[14] evaluated humans’ referencing accuracy when 
interpreting deictic gestures for pointing the targets 
positioned horizontally on the wall. However, they only 
measured the performance in a collaborative virtual 
environment (CVE). 

While previous works showed acceptable 
performance of the deictic gesture-based spatial 
referencing for short-distance applications, limited 
applications in large-scale environments need to be 
further evaluated. 

2.2 Deictic Gesture Recognition 
Deictic gesture-based spatial referencing aims to 

exchange accurate spatial information through deictic 
gestures. Therefore, deictic gesture recognition has a 
significant impact on the final referencing results. 

Two main approaches for deictic gesture recognition 
have been proposed in the literature. One is a wearable 
sensor-based approach. This approach attempts to 
recognize deictic gesture by analyzing the electrical 
muscle stimulation (EMS) from electromyography 
(EMG) generated during the muscle activity [15,16], the 
change in measures from inertial measurement units 
(IMUs) [2,17], and the posture and motion data from data 
gloves [18]. However, although wearable sensors have 
the benefit of direct acquisition of the spatial posture of 
the pointing arm, they often require connection to a data 

acquisition (DAQ) device, thus restricting the 
applicability of this method outside of a controlled 
environment [19,20]. 

Meanwhile, recent advances in computer vision 
technologies have brought vision-based approaches to 
mainstream deictic gesture recognition. Vision-based 
deictic gesture recognition does not require users any 
additional devices and only employs their pointing arms 
within the camera angle. Earlier approaches detected 
gestures through the visual features (i.e., skin-color blobs) 
collected from monocular cameras (e.g., RGB or infrared 
camera) [21] and binocular cameras [22].  

Recent works on vision-based approaches have 
focused on the implementation of RGB-D cameras. 
Owing to the ability to augment the RGB image with 
depth information, RGB-D cameras are frequently being 
adopted in vision-based approaches. 

In a vision-based approach, the deictic gesture is 
defined based on the relationships among the body joints. 
Three main models for estimating the pointing direction 
were developed [12,23]: 

• Elbow-wrist model assumes that the pointing 
direction is defined by a vector connecting the 
elbow and the wrist (hand) of the pointing arm. 

• Head-wrist model assumes that the pointing 
direction is defined by a vector connecting the head 
and the wrist (hand) of the pointing arm. 

• Shoulder-wrist model assumes that the pointing 
direction is defined by a vector connecting the 
shoulder and the wrist (hand) of the pointing arm. 

The choice of a particular model mainly depends on 
the task and on the technology available for sensing the 
subject’s posture [2]. This work evaluates the 
performance of the spatial referencing method using a 
shoulder-wrist model, because the elbow-wrist model 
gives lower accuracy in large-scale environments and the 
head-wrist model has potential problems associated with 
the occlusion in pose estimation (i.e., safety helmets) [24]. 

3 Methodology 

3.1 Deictic Gesture Detection 
The detection of the deictic gesture is performed 

based on the 3D human skeletal data extracted from the 
RGB and depth images. To estimate the human skeletal 
data, we employ OpenPose [25] library, a real-time 
human pose estimation system. The library (BODY-25 
model) detects 25 human body joints from each RGB 
image frame in 2D coordinates. The 2D coordinates are 
then projected to corresponding 3D points using the 
depth information [26]. 

In particular, we focus on the position of the shoulder 
𝐩! = (𝑥!, 𝑦!, 𝑧!), elbow 𝐩" = (𝑥" , 𝑦" , 𝑧"), and the wrist 
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𝐩# = (𝑥# , 𝑦# , 𝑧#)  joints for deictic gesture detection, 
which is required for the selected shoulder-wrist model. 
We use wrist position instead of fingers, considering the 
computation efficiency for further on-site applications. 
Given the position of the three body joints, the elbow 
joint angle θ is defined by:  

cos 𝜃 =
𝐯!" ⋅ 𝐯!#
|𝐯!"||𝐯!#|

 (1) 

where 𝐯!" = 𝐩" − 𝐩! is the vector from the shoulder 
to the elbow joint and 𝐯!# = 𝐩# − 𝐩! is the vector from 
the shoulder to the wrist joint. If θ	is below a predefined 
angle, the system assumes that the person is stretching 
their arm for “pointing” and performs the panel 
estimation. 

3.2 Pointed Panel Estimation 
To estimate the pointed panel, we first compute the 

pointed position. The pointing direction is defined by a 
straight line starting from the shoulder to the wrist joint: 

𝐬 = 𝐩! + 𝜆(𝐩# − 𝐩!),	𝜆 ∈ ℝ	 (2) 

For a ceiling pointing task, panels are parallel to floor 
at a constant height of the ceiling ℎ . Therefore, the 
pointed position 𝐩$ = (𝑥$, 𝑦$, 𝑧$)  is calculated as 
follows: 

𝑥$ = 𝑥! +
ℎ − 𝑧!
𝑧# − 𝑧!

(𝑥# − 𝑥!)	 (3) 

𝑦$ = 𝑦! +
ℎ − 𝑧!
𝑧# − 𝑧!

(𝑦# − 𝑦!) (4) 

𝑧$ = ℎ (5) 

In a wall pointing task, panels are parallel to wall at a 
constant distance 𝑑 . Thus, akin to ceiling, the pointed 
position in this case is computed as: 

𝑥$ = 𝑑	 (6) 

𝑦$ = 𝑦! +
𝑑 − 𝑥!
𝑥# − 𝑥!

(𝑦# − 𝑦!)	 (7) 

𝑧$ = 𝑧! +
𝑑 − 𝑥!
𝑥# − 𝑥!

(𝑧# − 𝑧!)	 (8) 

The pointed target is then estimated using the pointed 
position. Let 𝐩%,' be the center point of the target panel 
index 𝑖 ∈ {1, 2, 3, . . . , 𝑛}, where 𝑛 ∈ ℕ. A panel with the 
closest Euclidean distance from the center point is 
selected as a pointed panel 𝑖$. 

𝑖$ = argmin
'
IJ𝐩$ − 𝐩%,'JK (9) 

4 Experiment 

4.1 Experimental Setup 
The experimental setup is depicted in Figure 1. The 

RGB and depth images are simultaneously captured by 
Intel RealSense™ Depth Camera D435 at a frame rate of 
up to 30 fps and with an image resolution of 640 x 480 
pixels and 840 x 480 pixels, respectively. The camera has 
an operating range of 0.11-10m. It is installed at position 
𝐩(  facing participants, at the height of 0.7m and the 
pointing subject is located at position 𝐩) , 3.0m away 
from the camera. Five target panels with an equal size of 
0.7 x 0.7m are located side by side on both ceiling and 
wall.  

Four participants (two males and two females) were 
recruited to perform the pointing tasks. Each participant 
performed two experiments, 15 iterations for each 
experiment. A single iteration consists of 10 pointing 
trials: five ceiling panels (from C1 to C5) and five wall 
panels (from W1 to W5), in sequential order. In sum, we 
obtained 2 x 15 x 10 = 300 trials for each participant. A 
single experiment took approximately 10 minutes per 
participant.  

 
Figure 1. Illustration of the experimental 
environment. 

4.2 Performance Metrics 
We use the following metrics to evaluate the 

performance of the deictic gesture-based spatial 
referencing. 

Distance error. Euclidean distance between the 
pointed position 𝐩$  and the center point of the target 
panel 𝐩%. 

𝜀 = J𝐩$ − 𝐩%J.  (10) 

F1 score. We also refer to this measure as panel 
recognition rate (see Section 5.2). F1 score is defined by: 

𝐹1	𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 	 (11) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(13) 

For each pointed position, we consider it as true 
positive (TP) if it is classified as a correct target panel, 
false negative (FN) if it is classified as other target panels, 
false positive (FP) if the subject is pointing at other target 
panels, and true negative (TN) if the subject is pointing 
at other target panels but classified correctly.  

5 Results 
A total of 1,200 pointing trials of four pointing 

subjects were evaluated in an offline setting in order to 
validate the performance of the spatial referencing 
method. The main results are shown in Table 1 and Table 
2. 

5.1 Distance Error 
The distance error by the pointing subject is shown in 

Figure 2. We observed a similar tendency between all 
four participants: on average, the ceiling pointing task 
yielded a higher mean distance error and standard 
deviation (1.125 ± 0.263m) compared to the wall 
pointing task (0.410 ± 0.174m).  

Among the subjects, Subject 3 reached the highest 
mean distance error for the ceiling pointing task with 
0.482m of distance gap between the lowest, Subject 1. 
For the wall, Subject 2 showed the highest distance error 
with 0.207m of distance gap between the lowest, Subject 
1.  

Moreover, the mean distance error was higher when 
pointing the side panels (0.836 ± 0.241 for C1/C5 and 

W1/W5) than the panels near the center (0.721 ± 0.210 
for C2-C4 and W2-W4). This phenomenon will be 
expanded up in Section 5. 

5.2 Panel Recognition Rate 
We found that the ceiling pointing task shows a lower 

panel recognition rate. The mean F1 score of the ceiling 
pointing task was 0.815, while the wall pointing task was 
0.896.  

Higher error distance increases the probability of 
inferring the wrong panels located nearby, which in turn 
lowers the panel recognition rate. Therefore, the F1 score 
tends to follow the reverse order of the distance error. 
This tendency is especially salient in the panels near the 
center. 

 
Figure 2. Distance error by the pointing subject. 
(C1-C5 and W1-W5 refers to target ceiling and 
wall panels from left to right, respectively.)

Table 1. Evaluation results of the ceiling pointing task: Distance error (Mean ± SD) and F1 score. 

Metrics C1 C2 C3 C4 C5 
Distance Error (m) 1.118 ± 0.243 1.159 ± 0.197 1.121 ± 0.216 1.090 ± 0.319 1.135 ± 0.316 

F1 Score 0.849 0.826 0.837 0.756 0.808 

Table 2. Evaluation results of the wall pointing task: Distance error (Mean ± SD) and F1 score. 

Metrics W1 W2 W3 W4 W5 
Distance Error (m) 0.561 ± 0.204 0.325 ± 0.134 0.282 ± 0.196 0.352 ± 0.145 0.530 ± 0.180 

F1 Score 0.948 0.802 0.946 0.861 0.921 

6 Discussion 
Our experimental results present that the current 

deictic gesture-based method can estimate the pointed 
position on the wall and ceiling with a mean distance 
error of 0.767m. We observed worse performance in the 
ceiling with a mean distance error of 1.125m, which was 

0.715m higher than the mean distance error of the wall. 
In the estimation of the panel, the mean F1 score dropped 
at a rate of 8.98% compared to the wall. These measures 
indicate that variation in plane causes a performance gap 
in the dimensional information exchange regarding the 
perception accuracy and target recognition rate. 

Furthermore, the mean distance error tends to 
increase by 15.91% when the target changes from the 
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center to side panels. In this situation, a subject mainly 
delivers the scaled spatial information to a robot. 

In general, these results can be explained by the 
pinhole projection model (Figure 3). Human eyes see the 
world via pinhole projection. The 3D world (on the world 
coordinate system) is projected onto a flat projection 
plane: this plane is focal length 𝑑  away from the 
projective center along the 𝑍)  axis (on the human 
coordinate system), the gaze direction [27]. Thus, a 3D 
point 𝐩 = (𝑥), 𝑦), 𝑧)) in the human coordinate system is 
projected to 2D coordinates on the projection plane at a 
rate of 𝑑/𝑧): 𝐩′ = (𝑥), 𝑦))𝑑/𝑧). Therefore, the area of 
the target panel is also projected to the projection plane, 
affecting the visible area of the panel with respect to the 
rate of 𝑑/𝑧). 

 
Figure 3. Pinhole projection model [27]. 

The top and side views of the experiment setup are 
depicted in Figure 4. 𝐀* and  𝐀+ refers to the visible area 
of the panels projected on the projection plane, 
perpendicular to the gaze direction 𝑍* and 𝑍+ (Here, we 
assume a person gazes at the center of the target panels 

when pointing). In both situations, 𝐀* is larger than 𝐀+ 
due to the difference in between the angles 𝜃* and 𝜃+, as 
well as the position of the panels. A smaller visible area 
hinders the subjects from pointing precisely while 
maintaining consistency. Thus, compared to the targets 
with comparatively large visible areas (wall and center 
panels), the performance degrades in the targets with 
small visible areas (ceiling and side panels). Overall, it 
can be noted that the visible area of the target is a crucial 
factor for human’s ability of deictic gesture-based spatial 
referencing for both wall and ceiling conditions. 
Therefore, in practice, one can expect lower performance 
in referencing a distanced and angled regions of interest 
in overhead operations (e.g., electrical wiring, plumbing, 
and interior finishing work). In such situations, 
collaborative robots need mobility for estimation of the 
workspace geometry through navigating themselves 
closer to the target. 

Considering the results mentioned above, we see 
three ways to improve the current spatial referencing 
method for application in collaborative construction 
robots. First, we could give the robot dimensional and 
scaled spatial information with interaction modalities 
(i.e., speech). This allows the robot to reason about the 
region of interest with additional criteria, thus enhancing 
perception accuracy. Presenting the spatial information 
with a form of region could be considered as well. 
Deictics are often thought of as referring to an object but 
can also be used to refer to a region of space [8]. This 
method provides interpretability and predictability to the 
user intent and has a collateral benefit of correction. 
Lastly, as suggested by Medeiros et al. [20], visual 
feedback makes a difference in the accuracy of the 
pointing task. In particular, we could enhance human’s 
ability to indicate the target with a smaller visible area by 
receiving visual feedback from robots.

 
Figure 4. The top (left) and side (right) views of the experimental environment. The panels were spaced for a 
better understanding. 
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7 Conclusion 
This work explored the challenges of the current 

spatial referencing method based on deictic gestures. It is 
challenging for a robot to reason about the exact region 
of interest in a large-scale 3D construction environment, 
cluttered in many situations. In this context, we 
selectively overviewed the performance of deictic 
gesture-based spatial information exchange in wall and 
ceiling with various angle conditions and discussed some 
solutions. Evaluation results show that the performance 
degrades in exchanging spatial information on the ceiling 
and side panels pertaining to the perception accuracy and 
the target recognition rate. The results also imply that the 
target’s visible area is a crucial factor for human’s ability 
of deictic gesture-based spatial information exchange for 
both wall and ceiling conditions. These findings can 
guide and inform our approaches to developing 
collaborative construction robots supported with an 
intuitive and natural human-robot interface. 

In this work, we limited our focus on the performance 
evaluation to the robot’s interpretation ability. Future 
work will include performance evaluation on the 
human’s interpretation ability in a large-scale 
environment for a higher level of the collaborative 
environment such as shared autonomy. Furthermore, 
while we performed data processing and evaluation 
offline, we intend to further our research on on-site 
application of this method. 
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